A counterexample to a theorem of Tarun Pradhan

Jianlong Han, Seth Armstrong, Sarah Duffin
Department of Mathematics
Southern Utah University
Cedar City, Utah, 84720, USA

Abstract—In a previous volume of IJSER, a theorem was published that claimed absence of a limit cycle for an exploited prey-predator fishery system of equations with Beddington-DeAngelis type functional response. A counterexample is offered to show that there is a limit cycle under conditions for which the theorem claims absence of limit cycles.

Key words: Beddington-DeAngelis functional response, bionomic equilibrium, biotechnical productivity, global stability, limit cycle, prey-predator fishery

1 INTRODUCTION

An investigation of predator-prey dynamics in a fish population with Beddington-DeAngelis functional response was carried out in [3]. This analysis contained a theorem that we show to be incorrect. For clarity we mimic the notation used there. The system involved densities \(x \) and \(y \) of prey and predator, respectively, given by

\[
\begin{align*}
\frac{dx}{dt} &= r x \left(1 - \frac{x}{k}\right) - \frac{axy}{b + cx + y} - q_1 Ey, \\
\frac{dy}{dt} &= \frac{axy}{b + cx + y} - dy - q_2 E y.
\end{align*}
\]

The system of equations is studied over \(P = \{(x,y) | x,y > 0 \} \) since, in any case, predation and harvesting naturally limits the growth of population densities. In the system, \(r \) and \(d \) are the natural growth and decline rates of prey and predator, \(k \) represents carrying capacity of the prey, and \(q_1 E \) and \(q_2 E \) are combined catchability and harvesting effort of prey and predator. In the system, the joint \(xy \)-terms represent the standard Beddington-DeAngelis functional response. When these are multiplied by rates \(a \) and \(c \), what is obtained is the per capita interaction rate for feeding decline and feeding-related growth of prey and predator, respectively.

In [3], Theorem 3, the author stated the following, where BTP as defined in [1] is the biotechnical productivity, meaning the ratio of the biotic potential \(r \) to the catchability coefficient \(q_1 \).

Theorem 1 (Pradhan, [3]). If the harvesting effort is less than or equal to the prey BTP \((E \leq r/q_1)\), then the system (1) does not possess limit cycles in \(P = \{(x,y) | x,y > 0 \} \).

We note that the claim does hold trivially if the inequality is reversed since if \(E > r/q_1 \) the conditions of the Bendixon-Dulac test are satisfied, so that the system does not possess limit cycles in \(P \). However, this is to be expected since \(E > r/q_1 \) suggests that harvesting of the prey exceeds its birth rate, so prey population density \(x(t) \to 0 \) as \(t \to \infty \). It is then easily established that the predator population density \(y(t) \to 0 \) as well. Therefore, \((0,0)\) is a stable steady-state solution. We conclude that under \(E > r/q_1 \), the system does not possess limit cycles in \(P \).

However, under the original hypothesis, we can construct a counterexample to verify that, in fact, there is a limit cycle.

2 CONSTRUCTING THE COUNTEREXAMPLE

Set \(r_1 = r - Eq_1 \), \(d_1 = d + Eq_2 \), and \(k_1 = r_1 k_1/r \). Then \(E \leq r_1/q_1 \) is equivalent to \(r_1 \geq 0 \). Under the change of constants, (1) becomes

\[
\begin{align*}
\frac{dx}{dt} &= r_1 x \left(1 - \frac{x}{k_1}\right) - \frac{axy}{b + cx + y} - q_1 Ey, \\
\frac{dy}{dt} &= \frac{axy}{b + cx + y} - dy - q_2 E y.
\end{align*}
\]

To nondimensionalize (2) we change variables from \(t \) to \(r_1 t \), \(x \) to \(x/k_1 \), and \(y \) to \(y/(ck_1) \). We obtain

\[
\begin{align*}
\frac{dx}{dt} &= x(1 - \frac{x}{k}) - \frac{axy}{A + x + y}, \\
\frac{dy}{dt} &= \delta \left(\frac{xy}{A + x + y} - d_2 y\right).
\end{align*}
\]

Where \(s = a/r_1 \), \(\delta = c/(ck_1) \), \(d_2 = cK_1/e \), and \(A = a/(ck_1) \).

The following theorem will be used to lead to the desired counterexample.

Theorem 2 (Hwang, [2]). If \(d_2 < (1 + A)^{-1} \) and \(tr(J(x^*,y^*)) > 0 \), then there is exactly one limit cycle for (3), where \((x^*,y^*)\) is a steady-state solution of (3) and where \(x^* \) and \(y^* \) satisfy

\[
(\delta^2 - 1)x^2 + (s - 1 - d_2 s)x^* - d_2 A s = 0, \quad y^* = \left(\frac{1}{d_2} - 1\right)x^* - A
d
\]

and

\[
tr(J(x^*, y^*)) = -x^* + \frac{(x^* - y^*)^2}{(x^* + y^* + A)} = -x^* + \frac{(x^* - y^*)^2}{(x^* + y^* + A)} = -x^* + \frac{(x^* - y^*)^2}{x^*}.
\]

Matching the conditions in Theorem 2 for (3) can be accomplished by setting \(s = 5/3 \), \(d_2 = 1/4 \), \(\delta = 1/2 \), and \(A = 1/10 \).
Then we have \(x^* = \frac{(-2+\sqrt{33})}{24} \approx 0.1144\) and \(y^* = \frac{(-19+5\sqrt{33})}{40} \approx 0.2431\). From \(s = a/r_1 = 5/3 > 0\), we have \(r_1 > 0\), which implies that \(E \leq r/q_1\).

Moreover, using these same values for \(S, d_2, \delta,\) and \(A\), as well as applying the values stated for \(x^*\) and \(y^*\) in (4) yields \(tr(J(x^*,y^*)) = \frac{(309-47\sqrt{33})}{960} \approx 0.0406 > 0\). Since \(d_2 = 1/4 < (1+A)^2 = 10/11\), both conditions of Theorem 2 are satisfied. We conclude that there exists exactly one limit cycle.

3 APPROXIMATION OF THE LIMIT CYCLE

We use the built-in numerical differential equation solver in *Mathematica* to approximate the solution to (3) with initial conditions \(x(0) = y(0) = 0.5\) over the interval \(0 \leq t \leq 200\) to visualize the limit cycle whose existence has been demonstrated. This is displayed in Fig. 1.

![Fig. 1. A limit cycle over 0 ≤ t ≤ 200 for (3) with s = 5/3, d_2 = 1/4, δ = 1/2, and A = 1/10 using initial conditions x(0) = y(0) = 0.5.](image)

REFERENCES

