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hence proof the theorem. 

                        

           In the unit disc U, having    and    of 

generalized relative orders   
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when 
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this prove the theorem. 

RELATIVE ORDER WITH RESPECT TO THE 

DERIVATIVE OF AN ENTIRE FUNCTIONS 
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           In the unit disc,   is analytic function 

and   be transcendental entire having the property 

     then  
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where    denotes the derivative of   .  To prove the 

theorem we require the following lemmas. 
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Hence prove the theorem. 
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