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Abstract— The propagation of small amplitude ion-acoustic solitary waves in relativistic electron beam plasma have been investigated in a 
plasma model, consisting of positive ion, electron and electron beams. By using the reductive perturbation theory, the Korteweg-de Vries 
(KdV) equation is derived. In this investigation both compressive and rarefactive solitons are found to exist. In this model of plasma, the 

ion-acoustic relativistic solitons are established for Q′ 







==

i

b

m
m

massion

massbeamelectron
<1. 

Keywards— KdV soliton, Relativistic, Electron Beam, Electron inertia   

 

1 INTRODUCTION                                                                     
HE studies of solitary waves are verstly greatful to the 
works of Korteweg-de-Vries [1] and Washimi and Taniuti 
[2]. Ikezi et al. [3] have observed an ion acoustic solitary 

wave in a double plasma machine. Several authors have stud-
ied ion-acoustic solitary waves theoretically (reported else-
where with sufficient references) as well as experimentally [4 – 
11]. Solitary waves have frequently been observed in various 
regions of Earth’s magnetosphere [12 – 14]. It is supposed that 
the ion and electron energies are dependent on the kinetic en-
ergy. The relativistic speeds in space plasma can be attained of 
velocities of plasma particles in the solar atmosphere and 
magnetosphere. Das and Paul [15] and many other workers 
like Nejoh [16], Das et al. [17], Chatterjee and Roychoudhury 
[18], El-Labany and Shaban [19], Singh et al. [20], Gill et al. [21], 
Gill et al. [22] and Abdelsalam et al. [23] have examined the 
relativistic effects on the formation of solitary waves in vari-
ous compositions of plasmas. 

In a hot relativistic beam plasma system, Magneville [24] 
has studied various dispersion relations of plasma waves. 
Kalita and Barman [25] have also examined the consequences 
of ion and ion beam mass ratio on the development of non-
relativstic ion acoustic solitons in a magnetized plasma in 
presence of electron inertia. Besides, the presence of high am-
plitude compressive solitons and very small amplitude rare-
factive solitons under smaller and higher order relativistic 
effects in the plasma is reported by Kalita and Das [26]. Kalita 
et al. [27] have investigated the existence of ion acoustic rela-
tivistic solitons in an unmagnetized plasma with positive ion 
beam. In this investigation they have regared lower and high-
er order relativistic effects. Kalita et al. [28] have established 
the relativistic compressive solitons of fast acoustic mode in a 
magnetized ion-beam plasma. Javidan and Saadatmand [29] 
have investigated the effect of high relativistic ions on ion 
acoustic solitons in electron-ion-positron plasmas with non-
thermal electrons and thermal positrons. Moreover, Javidan 

and Pakzad [30] have investigated the ion acoustic solitary 
waves in high relativistic plasmas with superthermal electrons 
and thermal positrons . Kalita and Das [31] have explored the 
dust ion acoustic solitary waves in plasma with negatively 
charged mobile dusts, ion and electrons under weak relativ-
istic effects.  

In this manuscript, we investigate mainly the higher order 
relativistic effect of electron beam on the formation of ion-
acoustic solitary waves consisting of electrons, positive ions 
and electron beams.  

 

2 BASIC EQUATIONS 
We consider one-dimensional, collisionless and unmagnet-

ized plasma consisting of ions, relativistic electron beams, to-
gether with the usual electrons. The basic system of governing 
equations in unidirectional propagation and in nondimen-
sional form can be written as  
For the ions, 

 ( ) 0=
∂
∂

+
∂
∂

ii
i vn

xt
n

                                                                  (1) 

0=
∂
∂

+







∂
∂

+
∂
∂

x
v

x
v

t ii
φ

                                                        (2) 

 For the isothermal electrons, 
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For the electron beams, 
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with the Poisson equation 
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3 DERIVATION OF THE KDV EQUATION AND ITS 
SOLUTION 

To derive the KdV equation from the normalized set of equa-
tions (1) – (7), We use a new slow stretched coordinate system 
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where U is the phase velocity of the ion acoustic wave in (x , t) 
space and ε is a small dimensionless expansion parameter. The 
flow variables asymptotically expanded about the equilibrium 
state in terms of the parameter ε as follows: 
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Using (8) and (9) in the equations (1) – (7) and then equat-

ing the coefficients of ε  and 2ε , we get the following equa-
tions: 
ε  order equations are - 
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Integrating the first six equations of (10) with the use of the 
boundary conditions 0111 === bei nnn , 

0111 === bei vvv , 01 =φ  at ∞→ξ ,we get 
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 Using the values of 1in , 1en and 1bn  in the last equation of 
(10), the expression for the phase velocity U can be written in 
the form 
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From the second order equations of (11) with the use of (12) 
and (13), the KdV equation can be obtained as 
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4 SOLITARY WAVE SOLUTION 
Using the transformation τξη V−= , the KdV equation 

(14) can be simplified to give the solitary wave solution as 
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where V is the velocity with which the solitary waves travel to 

the right. 

Thus, the wave amplitude of the relativistic soliton with 

higher order relativistic effects is given by 
p
V3

0 =φ  and the 

corresponding width by
V
q2=∆ . 

5 DISCUSSION 
In this manuscript, the formation of ion acoustic solitary 

waves is investigated in a plasma compound in presence of 
electron beam and electron inertia considering higher order 
relativistic effects. In this model of plasma, the ion-acoustic 
relativistic solitons are established for 1<=′

i

b

m
m

Q . The 
presence of relativistic electron beams in the plasma is found 
to generate both compressive and rarefactive (from computa-
tion works) relativistic KdV solitons. It is seen from figure 1(a), 
that the amplitude of the KdV soliton increases sharply with 

( )1<′Q  for ( ) ( ) ( )37.0,26.0,15.0/0 =cv  exhibiting a declin-
ing trend in the upper existence region of ( )1<′Q  for fixed 

10.0=V  and 3=U . But the corresponding widths [Fig. 
1(b)] of the KdV solitons are found to decrease sharply in the 
lower existence region of ( )1<′Q  and slowly in the upper 
existence region of ( )1<′Q  for ( ) ( ) ( )37.0,26.0,15.0/0 =cv  
for fixed 10.0=V  and 3=U . The amplitude [Fig. 2(a)] of 
the KdV solitons increase slowly with 

c
v0  for fixed 

10.0=V and 3=U  for different values of 
( ) ( ) ( )39.0,28.0,17.0=′Q . However, the changes of the 

corresponding widths [Fig. 2(b)] of the KdV solitons show its 
opposite trend. Besides, the amplitudes are found to increase 
with the increase of ( )1<′Q  for fixed 

c
v0 . It is noteworthy to 

mention that the amplitudes [Fig. 3 (a)] of the KdV solitons 
though exhibit the same pattern of change like those for 

( )1<′Q  in figure 1(a) they are considerably smaller at the 
higher value of U . The corresponding widths [Fig. 3(b)] are 
similar to figure 1(b) in pattern but they are found to be nu-
merically smaller in magnitude. Though the growth of ampli-
tudes [Fig. 4(a)] of the KdV solitons are similar to that of the 
figure 2(a), they are smaller in magnitude for higher value of 
U  for ( ) ( ) ( )39.0,28.0,17.0=′Q . The corresponding 
widths [Fig. 4(b)] are similar to those of figure 2(b) in pattern 
but they are of small in magnitude. The soliton profiles of 
small amplitude compressive solitons are shown in figure 5 
for fixed 10.0=V , 5.00 =

c
v

 and 9.0=′Q  for different 
values of 25.1,15.1,05.1=U . Figure 5 shows that higher 
values of U  are seen to produce high amplitude compressive 
solitons. The soliton profiles of small amplitude compressive 
solitons are depicted in figure 6 for fixed 10.0=V , 

5.00 =
c
v

 and 9.0=′Q  for different values of 
( ) ( ) ( )312,29,16=U . From figures 5 and 6, it is observed 

that the amplitudes of the compressive solitons are much 
smaller than those of figure 5 for higher values of U . 
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FIG.1. Amplitudes (a) and widths (b) of higher order relativ-
istic compressive KdV solitons versus mass ratio Q′  for fixed 

10.0=V  and 3=U  for different values of 
( ) ( ) ( )37.0,26.0,15.0/0 =cv . 
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FIG. 2. Amplitudes (a) and widths (b) of higher order relativ-
istic compressive solitons versus cv /0  (with c = 300) for 

fixed, 10.0=V  and 3=U  for different values of mass ratio 
( ) ( ) ( )39.0,28.0,17.0=′Q . 
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FIG.3. Amplitudes (a) and widths (b) of higher order relativ-
istic compressive KdV solitons versus mass ratio Q′  for fixed 

10.0=V  and 6=U  for different values of 
( ) ( ) ( )37.0,26.0,15.0/0 =cv . 
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FIG. 4. Amplitudes (a) and widths (b) of higher order relativ-
istic compressive solitons versus cv /0  (with c = 300) for 

fixed, 10.0=V  and 6=U  for different values of mass ratio 
( ) ( ) ( )39.0,28.0,17.0=′Q . 
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FIG.5. Plot of the amplitude of the KdV solitons 

(compressive) with 10.0=V , 5.00 =
c
v

 and 9.0=′Q  

for different values of 05.1,15.1,25.1=U . 
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FIG.6. Plot of the amplitude of the KdV solitons (compressive) 

with 10.0=V , 5.00 =
c
v

 and 9.0=′Q  for different values 

of ( ) ( ) ( )312,29,16=U . 
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