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ON POTENTIAL FLOWS IN THE INTERIOR
SCHWARZSCHILD SPACE-TIME

Y. A. Abd-Eltwab, M. A. Soliman, A. B. Shamardan and M. Abdelgaber.

Abstract— In this paper we consider the interior Schwarzschild solution. Euler and continuity equations have been formulated as potential
problem, the equation which represent the fluid flow have been solved by separation. An exact solution is obtained and the solution is exact
under a condition involving the density of the hard body, the radial coordinate and the radius of the hard body itself.

Index Terms—Euler and continuity equations, fluid flow, interior Schwarzschild solution, potential problem, Schwarzschild.

1 INTRODUCTION

In 1900 Andrew M. Abrahams and Stuart L. Shapiro have
presented several new calculations of subsonic relativistic

fluid flows in the exterior Schwarzschild metric. The covari-
ant form of the equation of the potential fluid flaw problem for
irrotational, isentropic, perfect flow is [1];

P2+ 55 (nH) * =0, (1)
where 1 is the potential function of the fluid flow, H = hi is

the enthalpy scaled to its asymptotic value at infinity, c is the
sound speed (the light speed equal 1) and the semicolon and
comma stands for the covariant and ordinary derivatives, re-
spectively. The relation between the enthalpy and the fluid
flow four-velocity is given by: Hu, = s ,. Hence the normaliza-

tion of the four-velocity yields: H = (lJJ_aljJ'a)%.
The interior Schwarzschild space-time metric is defined by [2]
,[31;

1 142
231N 1 V| agez (1) g2 _
o = (1-2) 25| car-(1-5)
r2d6? — r?sin?0 dg? (1.2)

R 2
where, R? = ;TLGP ,G is the gravitational constant, p and ry is

the density and the radius of the hard body respectively.
1 1
Besides we put ko = (1 - ﬁ)2 and k = (1 - ;—22)2 then, (1.2)

ﬁZ
becomes,
3 1,2
ds? = —k™2dr? —r2d0% —r2sin?0 de? + (Eko - Ek) c?dt?
(1.3)

The covariant and contravariant metric tensors of (1.3) are,
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k=2 0 0 0
0 —r? 0 0
8 =1 o o ~—Tr’sin’@ 0 (1.4)
\o 0 0 c2(3k —lk)Z/
2 0
and

—k2 0 0 0
0 -r2 0 0
g = 0 —r~?sin~%0 0

2 FORMULATION OF THE PROBLEM

Using the definition of ; we obtain [2];

-1 1
Vi = (-7 [(~e)g™Wy| . 1)
Substituting (1.4) and (1.5) in (2.1) we get;
1o e (i = k) 2 [k Gk, — LK) 20
by =-r k(zko zk) ar[r k(zko zk) ar]' 2.2)
2 _ 1 0. a0
llJ;Z ~ r2sin6 90 Slneﬁ] ! (23)
. -1 9%y
llJ;g = r25in29ﬁ (24)
and
5 (3 1,\ 292y
yh=c? (k- 2k) 2L (2.5)

Assuming axisymmetric (% = O) [4]; then involving equa-
tions (2.2)-(2.5) in (1.1), yields

3 1 \7%9? 1 9
2 (Fha-3k) S

.l
[smGE

2 dt2  r?sin090
k(3k 1k)_16[k2(3k 1k)61p
1220 72%) o[ \2 T2 ar
+1—c2 . 3k 1 \?dInHay
2z |° (2 ) ) at ot

(2 dINHOY _ _,alnHAY) _
ar or a0 oo|

(2.6)
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For incompressible fluid (speed of sound equals speed of light,
ie. c¢=1), (2.6) becomes [4];

-2 32
2 (3 1 2 1 9. o0
c 2(—k0——k) —“’——_—[sme—“’]—
2 2 ot2  r2sin6 96 a0
k
2

3 1k‘1ak23k 1\ _
r(z"z)ar[r(z"z)ar]_‘
2.7)

3  ANALYSIS

The orthogonality of local coordinate system yields a sepa-
rable solution;
Y = X(t) U(r)V(8).
If we assume zero vorticity and stationary conditions
(W) L= (Vo) . = 0. Then we have,

1
Pe= -l =—(1-v8)7%,
where v,, the magnitude of the asymptotic fluid three-

(3.1)

velocity. Hence ?;lep = 0. Then, from (3.1) we get,
X(t) =cit+cy, (3.2)
Where ¢; = —ud, and c, is an arbitrary constant. Equations
(3.1) and (2.7) imply,
U 0 [. oV 3 1,\"ta 3 1, U
anos 05| + KV (Cko = 2k) 2 [ke? (ko = SK) T2 = 0
(33)

Dividing (3.3) by UV we get,

. n0V], k(3 1.\ Yo, 2(3 1,.\ou] _

Tamoas [0 5] 5 Glo = 31) [l (B0 — 1) 5] = 0
(3.4)

Then we separate the last equation in tofollowing two equa-
tions,

d [ odV :
- smGE] = —B%Vsin® (3.5)
and
3 1,\7Yd[, /(3 1,.\dU] _ 2
k(Gko—3k) gk Gho—5K) 7] =870, (3.6)
Where, {3 is an arbitrary constant. A solution of (3.5) is;
V(8) = cosH, (3.7)
where B* = 2. We write (3.6) in the form,
% r2/R2 — r2 (3 JRZ =12 —+/R2 - rz)i—[:] =
(3 Jﬁz_—roz_m)
) 2R2U (—m . (38)
If we take, r = Rsina then, (3.8) take the form,
d% [sinza(3k0 —cosa) j—z] = 2U(3k, — cos ) 3.9
Or,
d?u 2cosa sina du 2U
do? [ sina (3k0—costx)] da sin?a 0 (3.10)
Substituting in (3.10) with,
U=—+ (3.11)

sin a,/(3kg—cos a) !
Then, equation (3.10) transformed to the standard form [5];

1642
L(c) = 2 1d[2cosa+ sin o
®= TSin?a” 2dal sina (3ky, — cos )
1 [2 cosa 4 sina z
4| sina  (Bky—cosa)l’
Or,
1+ cos?a  cos?a+ 6kycosa— 2 cos a
L(o) = —— - + .
sin?a 4(3k, — cos a)? (3kg — cos )

A particular solution of equation (3.12) is;

W = 4sina (3k, — cos a)?, (3.13)
under the condition
(130 cos?a — 396k, cos a + 216k, — 20) sin*a = 0
or
(130 k? — 396kok + 216k, — 20);_22 =0 (3.14)
Substituting (3.13) in (3.11) we get,
3
U =4 sina (3k, — cos o)z (3.15)
or
3
. _ _ 3
U=2(3 JRE-r2 —VR2-12)’ (3.16)

Substituting (3.2), (3.7) and (3.16) in(3.1), we get

3
Y= (—u®t+c,)cos0 [% (3 JRZ —r 2 —R2 - rz)z].
(3.17)
Equations (3-17) represent an exact solution of (2-7) under the
condition (3-14).

4 CONCLUSION

Under condition (3-14), the flow functiony given by
(3.17) gives a solution of equation (2.7) for a high den-
sity of a hard body . For example if we consider a hard
body of radius equal to the average radius of the earth,
then the flow functiony available only for the hard
body’s density of range between 3.5x 102 and
5.6 x 10'? density unit.
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