The Effect of Temperature on Rheological Properties of Cement Slurry

Nmegbu C.G.J¹, Dagde Kenneth², Amua Uchechukwu Roseline³
1 Department of Petroleum Engineering, Rivers State University, Port Harcourt.
2 Department of Chemical/ Petrochemical Engineering, Rivers State University, Port Harcourt.
3 Department of Petroleum Engineering, Rivers State University, Port Harcourt.

Abstract—This experimental work reveals the effect of temperature on cement slurry rheological properties. Understanding cement slurry rheology is of critical importance for the design, execution and evaluation of oil or gas well cementing operations. The rheology depends on many factors which includes temperature. Temperature variations in oil and gas wells cause instability of rheological properties of cement slurries during cementing operations. The properties of the cement slurry investigated were plastic viscosity, yield point, gel strength, fluid loss and thickening time. In this research, 345.21ml of fresh water, 1g of Ensta antifoam, 0.5g of dispersant, 3g of Hydroxyl-Ethyl Cellulose (HEC), 0.1 gal/sk retarder concentration and 773.69g of cement were used to formulate the cement slurry. The behavior of the rheological properties was investigated at temperature range of 80ºF – 190ºF. Polynomial regression analysis was employed to study the behavior of rheological properties at different temperatures. An application (RP Predictor) was created with Visual Basic.NET and used to carry out theoretical analysis on the rheological properties of the cement. The results obtained showed that as the temperature increased from 80ºF – 190ºF, the rheological properties investigated decreased: plastic viscosity from 105 – 90 (cp), yield point from 129 – 89 ((lb/100ft²), gel strength from 70 – 21 ((lb/100ft²), and fluid loss from 76 – 72 (ml/30min). However, the thickening time of the cement slurry increased from 2:50 – 19:58 (hr:min) with a rise in temperature confirming that adequate thickening time was required for a good cementing job. Also, the predictive models and application developed showed good prospects in predicting the behaviour of rheological properties at any given temperature.

Index Terms—Cementing, Cement Slurry, Neat Cement, Enhanced Cement, Rheological Properties, Temperature, Rheological Properties Predictor (RP Predictor), Graphic User Interface (GUI), Regression Analysis.

1.0 INTRODUCTION

Cementing is a necessary aspect of the drilling oil process. Cementing in drilling engineering involves mixing cement, cement additives, and water (either fresh or salt) to obtain cement slurry based on designs. This is then pumped down-hole through the pipe to extremely important points in the space around the pipes or in the open hole below the casing string.

Rudimentary cementing of oil wells began as far back as the turn of the 19th century when few wells went deeper than 610 metres. Cementing operations were usually done by the rig crew. Today, specialist service companies routinely cement wells of 6,098 metres and deeper. Cementing operations are either primary (done in the course of drilling a well) or secondary/remedial (intended to correct deficiencies in primary cementing or alter the well completion for production) (Michaux et al., 1990).

Rheology is concerned with the study of the deformation of fluids and flow of matter. Understanding the rheology of cement slurry is of great importance for the planning, execution and assessment of oil or gas well cementing operations. The rheology depends on several factors including temperature, water-to-cement ratio, specific surface of the cement powder (shape and size of the grains of cement), chemical makeup of the cement, additives, the relative distribution of the components at the surface of the grains, mixing and testing procedures.

The Temperature effect on the rheological properties of the rheological properties of cement slurries is not well understood at very high temperatures because the standard oilfield equipment allows measurements to be performed at temperatures below 80ºC. Minimal experimental studies at higher temperatures insinuate the stability of cement slurry which is already a concern below 80ºC, is even more problematic at higher temperatures (Nelson and Guillot, 1990).

Significant numbers of research work have been carried out in cement technology to comprehend cement properties to increase the effectiveness of oil well production. Shahriar (2011), investigated the rheology of oil well cement (OWC). The basic processes of the effects of additives on well cement the rheology were studied at various temperatures in the range of 23 to 60ºC making use of an advanced shear-stress/shear-strain controlled rheometer. From the study was found that, the well cement rheological properties largely
This work covers the investigation on the effect of temperature on rheological properties (plastic viscosity, yield stress, gel strength, fluid loss and thickening time) of cement slurry; development of predictive model showing the relationship between rheological properties of cement slurry and temperature; and creating an application for future prediction of the effect of temperature on rheological properties of cement slurry.

2.0 MATERIALS AND METHODS

The experimental materials and apparatus used for this work consists of the following: Hamilton Beach Mixer, Hamilton Beach Mixer Cup, Rheometer, Rheometer cup, Atmospheric Consistometer, Consistometer, Electronic Balance, API Filter Press, HPHT Filter Press, Water, Cement and additives.

2.1 Cement Slurry Formulation

345.21 ml of water was added into an hamilton beach mixer cup and allowed to stir for a minute. Ensta antifoam (1 gram) was added and allowed to stir for 5 mins. At 5 minutes Interval, dispersant and HEC of 0.5 gram and 3 grams was added to the mixture respectively. After the elapsed of 5 mins, the cement paste was added at 2 mins for low, 3 mins for high and 5 mins for higher speeds. The cement slurry was ready for analysis. Mudweight was taken and transferred to a consistometer for different temperatures regulations at 120 °F, 150 °F and 190 °F while 80 °F was taken without a consistometer at room temperature. After each regulations, the slurry was transferred to the rheometer were rheological readings were taken and recorded.

2.2 Rheological Properties Determination

i. About 150ml of the cement slurry was transferred into the rheometer cup and stirred for 10 seconds and heated to a working temperature (80°F).

ii. The motor was started by placing the switch in a high-speed position. Readings were taken at 300RPM. The gear of the motor was changed while the motor was running to try for other speeds (200, 100, 60, 30, 6, and 3 RPM).

iii. Step 2 was repeated at 120°F, 150°F, and 190°F.

iv. Readings were taken to determine: Plastic viscosity (cP), Yieldpoint (lb/100ft²), Gel strength (lb/100ft²).

Fluid Loss Determination

The following procedures shows how slurry fluid loss was determined:

About 150ml of slurry fluid was added into a filter press cup and allowed to stir for 1 minute. The slurry was then transferred to a consistometer for different temperatures regulations at 120°F, 150°F and 190°F while 80°F was taken without a consistometer at room temperature. After each temperature, the slurry was transferred to the filter press to record the filtrate volume.
The cement slurry was placed in the API filter-press cup to about 2/3 volume, inserted and tightened;

The CO₂ cartridge was placed in the filter-press cup to about 2/3 volume, inserted and tightened;

The knob was pressed in for pressure to build up;

The pressure was maintained at 100 psi.

The filtrate was collected in a 10ml cylinder within 30mins.

Then, the filtrate collected was measured and recorded.

The above procedure was repeated for higher temperatures using the HPHT filter-press.

Thicken Time Determination

Thickening time is the time in which cement slurry remains in liquid state and has the ability of being pumped. It is assessed under replicated downhole conditions with the help of a consistometer.

The following procedures shows how slurry thickening time was determined:

- To ascertain the thickening time of cement slurry at different temperature conditions a high pressure high temperature consistometer is employed.
- The slurry cup assembly contained the cement slurry.
- The slurry cup was put into the test vessel and the pressure was raised via an air-driven hydraulic pump.
- A temperature controller regulated the internal heater which maintained the required temperature profile, while the magnetic drive mechanism turned the slurry cup assembly at 150 rpm.
- A potentiometer controlled the output voltage.
- The dual channel strip chart recorder registered and displayed the cement consistency and temperature as a function of time. And the readings were taken;
- The test ended when the slurry reached a consistency of 100 BC (Beardon Consistency).

2.3 Predictive Models for the Rheological Properties of Cement Slurry

Polynomial regression statistical analysis was employed in creating the mathematical models for predicting plastic viscosity (PV), yield point (YP), gel strength (GS), fluid loss (FL), and thickening time (TT) at different temperature conditions.

Polynomial Regression Statistical Model is given as:

\[y = a_0 + a_1x + a_2x^2 + a_3x^3 \]

(1.1)

where \(y \) is the dependent variables (rheological properties); \(x \) is the independent variable (temperature); \(a_0, \ a_1, \ a_2 \) and \(a_3 \) are constants.

The system of linear equations used to get the constants are given as:

\[na_0 + a_1\sum x + a_2\sum x^2 + a_3\sum x^3 = \sum y \]

(1.2)

\[a_0\sum x + a_1\sum x^2 + a_2\sum x^3 + a_3\sum x^4 = \sum xy \]

(1.3)

\[a_0\sum x^2 + a_1\sum x^3 + a_2\sum x^4 + a_3\sum x^5 = \sum x^2y \]

(1.4)

\[a_0\sum x^3 + a_1\sum x^4 + a_2\sum x^5 + a_3\sum x^6 = \sum x^3y \]

(1.5)

The plastic viscosity rheological property of cement slurry is given as:

\[PV = 112.6154 + 0.025897T - 0.002067T^2 + 6.87814 \times 10^{-6}T^3 \]

(1.6)

\[R^2 = 0.977 \]

The yield point rheological property of cement slurry is given as:

\[YP = 146.07493 + 0.317502T - 0.009876T^2 + 0.0003095T^3 \]

(1.7)

\[R^2 = 0.933 \]

The gel strength rheological property of cement slurry is given as:

\[Gels = 68.4932 + 0.0461T + 0.0003677T^2 - 0.000010317T^3 \]

(1.8)

\[R^2 = 0.940 \]

The fluid loss rheological property of cement slurry is given as:

\[FL = 83.1663 - 0.12118T + 0.00046003T^2 + 6.87814 \times 10^{-7}T^3 \]

(1.9)

\[R^2 = 0.979 \]

The thickening time rheological property of cement slurry is given as:

\[TT = 2.568831E - 0.040027398T + (4.053037 \times 10^{-4}T^2) + 1.49944 \times 10^{-6}T^3 \]

(1.10)

\[R^2 = 0.965 \]

The rotational speed at given temperature is given as:

\[N_{8300} = 258.69034 + 0.3433902T - 0.0111474T^2 + 0.00003783T^3 \]

(1.11)

\[R^2 = 0.947 \]

where \(T \) (ºF) is the temperature.

Average absolute error is given as:

\[AAE = \frac{1}{n} \sum_{i=1}^{n} |y_{measured} - y_{predicted}| \]

(1.12)

where \(Y \) is the dependent variable measured or predicted with either the mathematical model or RP predictor (the developed application software).

2.4 Rheological Properties Predictor (RP Predictor)

![Diagram](image-url)
Figure 1: GUI for RP Predictor

The effect of temperature on cement slurry rheological properties can be analysed in different ways. It can be experimental or theoretical. The temperature effect on the rheological properties of cement slurry was analysed experimentally and theoretically by using the application (RP Predictor) created. The GUI of the software is depicted in figure 1. This application was created using data from the rheological properties of cement slurry with rheological enhancer, existing models, and predictive models.

3.0 RESULTS AND DISCUSSION

3.1 RESULTS

The experiment was first conducted using neat cement slurry as a control and then for cement slurry with rheological enhancers. The results obtained from the experimental studies to determine the effect of temperature on the rheological properties of cement slurry for both neat slurry and cement slurry with rheological enhancers are presented in Appendix A, Tables A.1-A.4. The experimental results showed that as temperature increased, the rheological properties (plastic viscosity, yield stress, and gel strength) decreased but for the thickening time which increased with increased temperature. The result obtained from the predictive models developed via RP predictor is shown in Table A.5 of Appendix A. A comparison of the results obtained from the experiment, predictive models (RP predictor) and existing models have been displayed in Table A.6, Appendix A.

3.2 Comparative Simulation of Rheological Properties at Different Temperatures

Here, the results obtained from the experiment conducted, predictive models (RP predictor) and existing model were simulated and the plots obtained.

3.2.1 Comparative Effect of Temperature on Plastic Viscosity

Figure 1: Comparative Temperature Effect on Plastic Viscosity of the Models

Figure 1 demonstrates the effect of temperature on plastic viscosity of cement slurry for the three cases at different temperatures. It was observed that, in the three cases, increase in temperature of the cement slurry led to decrease in the plastic viscosity of the cement slurry signifying that the resistance to flow of the slurry decreases with rise in temperature. Also, this confirms that, the predictive model and analytical application predicts the effect of temperature on plastic viscosity of cement slurry.

3.2.2 Comparative Effect of Temperature on Yield Point

Figure 2: Comparative Temperature Effect on Yield Point

Figure 2 shows the effect of temperature on yield point of cement slurry for the three cases at different temperature. It was observed that, in the three cases, increase in temperature of the cement slurry led to decrease in the yield point of the cement slurry signifying that the electrochemical forces within the cement slurry reduced with rise in temperature. Also, this confirms that, the predictive model and analytical application predicts the effect of temperature on yield point of cement slurry.
3.2.3 Comparative Effect of Temperature on Gel Strength

Gel strength is a property of cement slurries that describes the attractive forces that exist between particles suspended within the mixture. It develops as the slurry remains under static conditions. The effect of temperature on gel strength of cement slurry for the three cases at different temperature values has been simulated and displayed in Figure 3 below. From the simulation carried out, as the temperature of the cement slurry increased, the gel strength of the cement slurry decreased continuously. This signifies the ability of the cement slurry to resist gas invasion after pumping operations have ceased.

3.2.4 Comparative Effect of Temperature on Fluid Loss

Fluid loss agents are used in cement slurries to minimize cement dehydration in the annulus, reduce gas migration, improve bonding, and minimize formation damage. Figure 4 demonstrates the effect of temperature on fluid loss of cement slurry for the three cases at different temperature values. It was observed that, in the three cases, increase in temperature of the cement slurry lead to decrease in the fluid loss from the cement slurry signifying that the water content of the cement slurry decreases with rise in temperature.

3.2.5 Comparative Effect of Temperature on Thickening Time

Thickening time is the time in which cement slurry remains in a fluid state and is capable of being pumped. The simulation displayed in Figure 5 indicates that, with 0.1gal/sk retarder concentration, thickening time increased with rise in temperature of the cement slurry for the three cases considered in this study. This confirms that for a good cementing job, adequate thickening time is required (Umeokafor and Joel, 2010).

The simulations carried out and the results obtained confirmed that, the developed predictive models and analytical application efficiently predicts the effect of temperature on rheological properties of cement slurry with absolute error less than 5% of the experimental result.

4.0 Conclusion

Based on the results obtained from the laboratory experiment conducted, theoretical analysis done through the application created and existing models of rheological properties, the conclusions drawn are
as follows:

i. The rheological properties of cement slurry (such as plastic viscosity, yield point, gel strength and fluid loss) decreases as temperature increases.

ii. The flow resistance of the cement decreases with rise in temperature.

iii. Adequate thickening time is required for a good cementing job.

iv. The predictive models developed can be used to carry out theoretical analysis on the rheological properties of cement slurry with temperature variation.

v. The application created serves as an alternative to experiment on the effect of temperature on rheological properties of cement slurry of the same composition used in this study. It saves time and costs associated with laboratory experiment.

vi. The temperature of the well is a determining factor of any cementing job to be done. So, it should put into consideration when preparing the cement slurry.

5.0 APPENDICES

Appendix A

The results obtained from the experiments conducted at Pollution Control and Environmental Management (POCEMA) LTD are displayed in Table A.1 – A.4.

Table A.1: Rheology of Neat Cement @ Different Temperatures

<table>
<thead>
<tr>
<th>RPM</th>
<th>@ 80°F</th>
<th>@ 120°F</th>
<th>@ 150°F</th>
<th>@ 190°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0300</td>
<td>103</td>
<td>113</td>
<td>125</td>
<td>151</td>
</tr>
<tr>
<td>0200</td>
<td>78</td>
<td>101</td>
<td>102</td>
<td>126</td>
</tr>
<tr>
<td>0100</td>
<td>65</td>
<td>80</td>
<td>91</td>
<td>122</td>
</tr>
<tr>
<td>060</td>
<td>60</td>
<td>73</td>
<td>84</td>
<td>123</td>
</tr>
<tr>
<td>030</td>
<td>57</td>
<td>68</td>
<td>81</td>
<td>122</td>
</tr>
<tr>
<td>0</td>
<td>28</td>
<td>41</td>
<td>61</td>
<td>124</td>
</tr>
<tr>
<td>03</td>
<td>26</td>
<td>30</td>
<td>52</td>
<td>124</td>
</tr>
<tr>
<td>PV (cP)</td>
<td>65</td>
<td>50</td>
<td>53</td>
<td>124</td>
</tr>
<tr>
<td>YP (lb/100ft²)</td>
<td>43</td>
<td>63</td>
<td>73</td>
<td>124</td>
</tr>
<tr>
<td>Density (ppg)</td>
<td>15.0</td>
<td>15.0</td>
<td>15.0</td>
<td>124</td>
</tr>
<tr>
<td>Free fluid (ml)</td>
<td>1.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Source: Pollution Control and Environmental Management (POCEMA) LTD (2018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A.2: Rheological Properties of Cement Slurry with Rheology Enhancer @ Different Temperatures

<table>
<thead>
<tr>
<th>RPM @ 80°F</th>
<th>Ram Down</th>
<th>Ram Up</th>
<th>Average @ 80°F</th>
<th>Average @ 120°F</th>
<th>Average @ 150°F</th>
<th>Average @ 190°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0300(cP)</td>
<td>229</td>
<td>222</td>
<td>230</td>
<td>225</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>0200(cP)</td>
<td>202</td>
<td>201</td>
<td>201</td>
<td>201</td>
<td>201</td>
<td>201</td>
</tr>
<tr>
<td>0100(cP)</td>
<td>164</td>
<td>138</td>
<td>142</td>
<td>140</td>
<td>139</td>
<td>140</td>
</tr>
<tr>
<td>06(cP)</td>
<td>110</td>
<td>98</td>
<td>102</td>
<td>100</td>
<td>102</td>
<td>100</td>
</tr>
<tr>
<td>03(cP)</td>
<td>70</td>
<td>62</td>
<td>62</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>PV (cP)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>98</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>YP (lb/100ft²)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>129</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Slurry weight (ppg)</td>
<td>15.0</td>
<td>-</td>
<td>-</td>
<td>15.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Free fluid (%)</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: Pollution Control and Environmental Management (POCEMA) LTD (2018)

Table A.3: Result of Thickening Time Test of Neat Cement Slurry

<table>
<thead>
<tr>
<th>S/N</th>
<th>Temperature, °F</th>
<th>Thickening Time, Hrs: min</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>5.01</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>4.71</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>3.35</td>
</tr>
<tr>
<td>4</td>
<td>190</td>
<td>2.31</td>
</tr>
</tbody>
</table>

Source: Pollution Control and Environmental Management (POCEMA) LTD (2018)

Table A.4: Result of Thickening Time Test of Cement Slurry with 0.1% of Rheological Enhancer

<table>
<thead>
<tr>
<th>S/N</th>
<th>Temperature, °F</th>
<th>Thickening Time, Hrs: min</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>2.50</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>6.02</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>10.48</td>
</tr>
<tr>
<td>4</td>
<td>190</td>
<td>19.58</td>
</tr>
</tbody>
</table>

Source: Pollution Control and Environmental Management (POCEMA) LTD (2018)

Table A.5: Rheological Properties of Cement Slurry at
Different Temperatures

<table>
<thead>
<tr>
<th>Slurry Temperature (°F)</th>
<th>Density (ppg)</th>
<th>Temperature (°F)</th>
<th>PV (cP)</th>
<th>Gel Strength (Ib/100ft²)</th>
<th>Fluid loss (ml/30min)</th>
<th>Thickening Time (hr:min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>15.00</td>
<td>80</td>
<td>105.03</td>
<td>76.06</td>
<td>2.73</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>15.00</td>
<td>120</td>
<td>97.95</td>
<td>74.06</td>
<td>6.19</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>15.00</td>
<td>150</td>
<td>93.37</td>
<td>73.02</td>
<td>10.74</td>
</tr>
<tr>
<td>4</td>
<td>190</td>
<td>15.00</td>
<td>190</td>
<td>90.35</td>
<td>72.03</td>
<td>19.88</td>
</tr>
</tbody>
</table>

Source: Developed Application Software (RP Predictor)

Table A.6: Comparison of Rheological Properties of Cement Slurry obtained at Different Temperatures

<table>
<thead>
<tr>
<th>Rheological Properties of Cement Slurry</th>
<th>Temperature (°F)</th>
<th>Experimental Result</th>
<th>Theoretical Result (RP Predictor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV (cP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YP (lb/100ft²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GelS (lb/100ft²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL (ml/30min)</td>
<td>80</td>
<td>105</td>
<td>105.03</td>
</tr>
<tr>
<td>TT (hr:min)</td>
<td>2.50</td>
<td>76</td>
<td>76.06</td>
</tr>
<tr>
<td>PV (cP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YP (lb/100ft²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GelS (lb/100ft²)</td>
<td>120</td>
<td>129</td>
<td>129.16</td>
</tr>
<tr>
<td>FL (ml/30min)</td>
<td>74</td>
<td>76.06</td>
<td></td>
</tr>
<tr>
<td>TT (hr:min)</td>
<td>6.02</td>
<td>76.06</td>
<td></td>
</tr>
<tr>
<td>PV (cP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YP (lb/100ft²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GelS (lb/100ft²)</td>
<td>150</td>
<td>70</td>
<td>69.25</td>
</tr>
<tr>
<td>FL (ml/30min)</td>
<td>73</td>
<td>74.06</td>
<td></td>
</tr>
<tr>
<td>TT (hr:min)</td>
<td>10.48</td>
<td>74.06</td>
<td></td>
</tr>
<tr>
<td>PV (cP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YP (lb/100ft²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GelS (lb/100ft²)</td>
<td>190</td>
<td>21</td>
<td>19.76</td>
</tr>
<tr>
<td>FL (ml/30min)</td>
<td>72</td>
<td>72.03</td>
<td></td>
</tr>
<tr>
<td>TT (hr:min)</td>
<td>19.58</td>
<td>72.03</td>
<td></td>
</tr>
</tbody>
</table>

Appendix B

B.1: Visual Basic.NET Code for Investigating the Effect of Temperature on Rheological Properties of Cement Slurry:

```vbnet
'Dimensioning section'
Dim T As Double
Dim PV As Double
Dim θ As Double
Dim PVe As Double
Dim PVe1 As Double
Dim YPe As Double
Dim YPe1 As Double
Dim GelSe As Double
Dim FL As Double
Dim ThickTe As Double
Dim PVd As Double
Dim θd As Double
Dim PVd1 As Double
Dim θd1 As Double
Dim FLd As Double
Dim ThickTd As Double
Dim PVd2 As Double
Dim θd2 As Double
Dim FLd2 As Double
Dim ThickTd2 As Double
Dim PVd3 As Double
Dim θd3 As Double
Dim FLd3 As Double
Dim ThickTd3 As Double
Dim PVd4 As Double
Dim θd4 As Double
Dim FLd4 As Double
Dim ThickTd4 As Double
Dim PVd5 As Double
Dim θd5 As Double
Dim FLd5 As Double
Dim ThickTd5 As Double
Dim PVd6 As Double
Dim θd6 As Double
Dim FLd6 As Double
Dim ThickTd6 As Double
Dim PVd7 As Double
Dim θd7 As Double
Dim FLd7 As Double
Dim ThickTd7 As Double
Dim PVd8 As Double
Dim θd8 As Double
Dim FLd8 As Double
Dim ThickTd8 As Double
Dim PVd9 As Double
Dim θd9 As Double
Dim FLd9 As Double
Dim ThickTd9 As Double
Dim PVd10 As Double
Dim θd10 As Double
Dim FLd10 As Double
Dim ThickTd10 As Double
Dim PVd11 As Double
Dim θd11 As Double
Dim FLd11 As Double
Dim ThickTd11 As Double
Dim PVd12 As Double
Dim θd12 As Double
Dim FLd12 As Double
Dim ThickTd12 As Double
Dim PVd13 As Double
Dim θd13 As Double
Dim FLd13 As Double
Dim ThickTd13 As Double
Dim PVd14 As Double
Dim θd14 As Double
Dim FLd14 As Double
Dim ThickTd14 As Double
Dim PVd15 As Double
Dim θd15 As Double
Dim FLd15 As Double
Dim ThickTd15 As Double
Dim PVd16 As Double
Dim θd16 As Double
Dim FLd16 As Double
Dim ThickTd16 As Double
Dim PVd17 As Double
Dim θd17 As Double
Dim FLd17 As Double
Dim ThickTd17 As Double
Dim PVd18 As Double
Dim θd18 As Double
Dim FLd18 As Double
Dim ThickTd18 As Double
Dim PVd19 As Double
Dim θd19 As Double
Dim FLd19 As Double
Dim ThickTd19 As Double
Dim PVd20 As Double
Dim θd20 As Double
Dim FLd20 As Double
Dim ThickTd20 As Double
Dim PVd21 As Double
Dim θd21 As Double
Dim FLd21 As Double
Dim ThickTd21 As Double
Dim PVd22 As Double
Dim θd22 As Double
Dim FLd22 As Double
Dim ThickTd22 As Double
Dim PVd23 As Double
Dim θd23 As Double
Dim FLd23 As Double
Dim ThickTd23 As Double
Dim PVd24 As Double
Dim θd24 As Double
Dim FLd24 As Double
Dim ThickTd24 As Double
Dim PVd25 As Double
Dim θd25 As Double
Dim FLd25 As Double
Dim ThickTd25 As Double
Dim PVd26 As Double
Dim θd26 As Double
Dim FLd26 As Double
Dim ThickTd26 As Double
Dim PVd27 As Double
Dim θd27 As Double
Dim FLd27 As Double
Dim ThickTd27 As Double
Dim PVd28 As Double
Dim θd28 As Double
Dim FLd28 As Double
Dim ThickTd28 As Double
Dim PVd29 As Double
Dim θd29 As Double
Dim FLd29 As Double
Dim ThickTd29 As Double
Dim PVd30 As Double
Dim θd30 As Double
Dim FLd30 As Double
Dim ThickTd30 As Double

'Computation Section'
'For the existing model'
PVe = (θ - theta) * 1.5
YPe = (θ - PVe)
FLe = 10.954 * (V30 / Math.Sqrt(30))

'For the developed model'
PVe1 = (θ - theta) * 1.5
YPe1 = (θ - PVe1)
FLe1 = 10.954 * (V30 / Math.Sqrt(30))

# Appendix B

B.1: Visual Basic.NET Code for Investigating the Effect of Temperature on Rheological Properties of Cement Slurry:
YPd = 146.074932023534 + 
(0.317501877121686 * T) - 
(0.00986757625589374 * (T ^ 2)) + 
(0.0000399516327978154 * (T ^ 3))

GelSd = 68.4931787355454 + 
(0.0461007799531217 * T) + 
(0.00367705397650298 * (T ^ 2)) - 
(0.0000131721093325034 * (T ^ 3))

FLd = 83.16627122 - (0.121182602 * T) + (0.00046003 * (T ^ 2)) - 
(6.87814 * (10 ^ -7) * (T ^ 3))

ThickTd = -0.217046635 + 
(0.154412985 * T) - (0.0013065 * (T ^ 2)) + (3.03326 * (10 ^ -6) * (T ^ 3))

ACKNOWLEDGMENT

My gratitude goes to Mr. Sam Victor for his unending support in the course of this work.

REFERENCES


